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Abstract
In marine mammals, muscular development has been identified as a rate-limiting factor in achieving adult dive capacities. 
This study investigates the rate that myosin heavy chain (MHC) composition matures in a postural and locomotor skeletal 
muscle for four pinniped species with different lactation lengths: hooded seals, Cystophora cristata; harp seals, Pagophilus 
groenlandicus; northern fur seals, Callorhinus ursinus, and Steller sea lions, Eumetopias jubatus. The ontogeny of MHC 
isoform expression was compared with developmental rates of myoglobin concentrations, and aerobic (citrate synthase, 
β-hydroxyacyl-CoA dehydrogenase) and anaerobic (lactate dehydrogenase) enzyme activities. Within taxonomic families, 
species with shorter lactation periods had more mature muscles biochemically at birth, and fiber types differentiated earlier 
during ontogeny (Phocidae: hooded > harp seals, Otariidae: northern fur seals > Steller sea lions). Northern fur seal neonates 
had the most phenotypically-mature muscles in this study, with no immature MHC isoforms. The relationship between 
muscle biochemistry and MHC composition became more pronounced with age, and developed to reflect swimming mode 
and activity levels. In adults, phocids had more slow-twitch oxidative protein in their primary locomotor muscle, the Lon-
gissimus dorsi (LD), than otariids which likely reflects oxygen-sparing strategies for the phocids’ longer dives. Conversely, 
northern fur seal muscles had higher proportions of fast-twitch MHCs in the Pectoralis and LD, likely indicative of this 
species’ smaller size and higher mass-specific metabolic rates. Thus, muscle phenotype is linked with species life history, 
and a mismatch between muscle biochemistry and MHC composition at weaning has important implications for the first 
year of independent foraging in pinniped pups.
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Introduction

During ontogeny, young animals face an energetic trade-
off between developing mature physiological traits ver-
sus allocating resources towards growth in mass and size 
(Ricklefs et al. 1994). Precocial animals are generally born 
at a larger body size and with more mature physiology and 
subsequently experience slower rates of neonatal growth 
as compared with altricial species (McLaren 1993; Choi 
et al. 1993; Ricklefs et al. 1994). This has ecological sig-
nificance because the time needed to reach physiological 
maturity directly correlates with the length of the neonatal 
dependency period (i.e., lactation, nestling) and/or degree 
of maternal investment (Derrickson 1992). While matu-
ration rates may differ among organ systems, the rate at 
which muscles mature may be particularly crucial because 
the success of both foraging and predator avoidance strat-
egies is contingent on the newly independent juveniles 
having sufficiently mature skeletal muscles to perform 
effectively.

Across vertebrates, neonates are generally born with 
immature muscle phenotypes and function. This includes 
lower myoglobin (Mb) concentrations, mitochondrial and 
capillary density, and mass-specific aerobic and anaerobic 
enzyme activities than in adults (Condon et al. 1990; Bald-
win and Haddad 2001; Richmond et al. 2006; Lestyk et al. 
2009; Prewitt et al. 2010; Shero et al. 2012; Burns et al. 
2007, 2015; Kanatous et al. 2008). In addition to develop-
ing the biochemical properties necessary to support oxy-
gen  (O2) and energetic substrate delivery, the muscle’s 
myofibrillar protein composition also determines ATPase 
activities and energy use for muscular contractions (Bald-
win and Haddad 2001). Slow- and fast-twitch fibers are 
characterized by the speed of myosin cross-bridge cycling 
rates and contraction velocity (Baldwin and Haddad 2001), 
and the relative proportion of slow and fast myosin heavy 
chain (MHC) isoforms changes across development and in 
response to activity patterns (Baldwin and Haddad 2001). 
In vertebrates, neonatal muscles typically contain greater 
proportions of slow-oxidative (SO) MHCs, as well as 
immature Embryonic and Neonatal fiber types and MHC 
isoforms (d’Albis et al. 1991). Conversely, fast-twitch oxi-
dative-glycolytic (FOG) MHCs support burst-type activi-
ties, but heavier reliance on glycolytic pathways makes 
these fibers more prone to fatigue (Flück 2006; Hoppeler 
and Flück 2002). During ontogeny, the fiber type profile of 
any given muscle shifts from containing more Embryonic/
Neonatal and SO MHCs towards a more FOG profile. In 
this process, Embryonic and/or Neonatal fibers are gradu-
ally replaced by MHC I (SO), MHC IIA (FOG; primar-
ily oxidative), and finally MHC IID/X (FOG; primarily 
glycolytic) and/or MHC IIB (fast-twitch glycolytic; FG) 

fibers. Muscles that contain more MHC I and SO iso-
form generally have the corresponding biochemical traits, 
such as high mitochondrial content, and greater citrate 
synthase (CS) and β-hydroxyacyl-CoA-dehydrogenase 
(HOAD) activities for aerobic metabolism and reliance 
on lipid stores (Flück 2006; Hoppeler and Flück 2002; 
Kanatous 1997; Kanatous et al. 1999). Conversely, mus-
cles that contain more MHC IIA and IID/X isoform have 
more anaerobic potential and high lactate dehydrogenase 
(LDH) activities (Flück 2006; Hoppeler and Flück 2002). 
The regulation of this developmental process depends on 
multiple factors, ranging from neural stimuli and load-
bearing activity, nutritional status, hormone levels, to 
genetic predisposition (Walker and Luff 1995).

The underwater foraging activities of adult marine mam-
mals are facilitated by a suite of physiological adaptations 
that include large endogenous blood and muscle  O2 stores, 
and slower  O2 use rates (Hochachka and Storey 1975; But-
ler and Jones 1997; Kooyman and Ponganis 1998). While 
hematology and blood  O2 reserves of both phocid and 
otariid species mature relatively quickly, muscles develop 
more slowly (Richmond et al. 2006; Burns et al. 2007; Clark 
et al. 2007; Shero et al. 2012). This may be particularly 
impactful because during long and deep dives, peripheral 
vasoconstriction reduces muscular perfusion, forcing reli-
ance on endogenous reserves and/or anaerobic metabolism 
(Irving et al. 1942; Scholander 1963; Ponganis et al. 2011). 
To compensate, pinniped muscles have Mb concentrations 
that are 10–20× that of terrestrial mammals and muscle fib-
ers that are indicative of endurance capacities (Burns et al. 
2007; Lestyk et al. 2009; Davis et al. 2004; Kanatous 1997; 
Kanatous et al. 1999). Without this mature physiology, 
at the onset of independent foraging pinniped pups make 
substantially shorter and shallower dives than their adult 
counterparts (Burns et al. 1999; Rehberg and Burns 2008; 
Fowler et al. 2006; Geiseler et al. 2013; Folkow et al. 2010). 
Once mature, phocid seals generally have greater  O2 stores, a 
more pronounced dive response, and attain much longer dive 
durations as compared with otariids (e.g., mean dive dura-
tion of phocids—hooded seal, Cystophora cristata: 14 min, 
Folkow and Blix 1999; harp seal, Pagophilus groenlandicus: 
8.1 min, Folkow et al. 2004 vs. otariids—northern fur seal, 
Callorhinus ursinus: 2.2 min, Gentry et al. 1986; Steller sea 
lion, Eumetopias jubatus: 1.8 min, Rehberg et al. 2009), 
which is likely reflected in muscle physiological properties.

Each muscle’s specific functional role further promotes 
development of highly differentiated phenotypes, and after 
birth the primary locomotor muscles mature faster and have 
higher aerobic capacities than muscles responsible for pos-
tural purposes (Burns et al. 2015; Lestyk et al. 2009; Choi 
et al. 1993). In otariids, the (forelimb) Pectoralis (Pec) is 
the primary locomotor muscle, while the Longissimus dorsi 
(LD) is primarily used for postural purposes and much less 
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for swimming. Conversely, phocids utilize a hind-limb 
swimming style and the LD is the primary locomotor mus-
cle, whereas the Pec is used for postural purposes and steer-
ing during dives (Howell 1929). While developmental and 
muscle-specific shifts in biochemical properties have been 
characterized, the degree to which these changes are syn-
chronized with changes in muscle MHC profiles that control 
contraction velocity and promote the slow and efficient use 
of  O2 stores is not well known. Whether maturation of bio-
chemistry and MHC occur in concert specifically in the Pec 
and LD muscles in pinnipeds would be crucial to developing 
diving and foraging capabilities.

Among pinnipeds, there is also a wide range in the dura-
tion of lactation, which reflects different offspring provision-
ing strategies (Costa and Shaffer 2012). Phocid seals are 
typically capital breeders, relying on their on-board mass 
and lipid reserves (i.e., energetic capital) to provision off-
spring while females fast throughout the lactation period, 
and therefore, the nursing period is kept short (Costa et al. 
1986; Kovacs and Lavigne 1992; Kovacs et al. 1991; Mel-
lish et al. 1999; Crocker et al. 2001; Wheatley et al. 2006). 
In the high arctic, transient pack ice and predation pressures 
from polar bears (Ursus maritimus) further constrain lacta-
tion lengths. For example, hooded seals have the shortest 
lactation length of any mammal, lasting just 3–7 days before 
pups are weaned (Bowen et al. 1985), while the sympatric 
harp seal lactation period lasts 7–14 days (Sivertsen 1941). 
Because phocid seal pups are weaned relatively soon after 
birth, they then undergo a post-weaning fast (PWF) dur-
ing which they remain hauled-out and inactive, cataboliz-
ing their newly acquired lipid reserves (Worthy and Lavigne 
1987; Lydersen et al. 1997). The PWF is presumed to pro-
vide pups more time for physiological development prior to 
independent foraging (Burns et al. 2004) while decreasing 
the time that post-partum females are exposed to threats of 
predation (Stirling 1977) and reducing metabolic overhead 
(Crocker et al. 2001), thereby improving transfer efficiencies 
of maternal energy to her pup. This is in contrast to species 
in the otariid family which utilize an income-breeding strat-
egy. Female otariids alternate between nursing their pups 
and foraging to recuperate mass, and lactation lengths in 
the otariid family are measured in months, as opposed to 
days or weeks as in phocids (Costa and Shaffer 2012). For 
example, northern fur seal females have the shortest lacta-
tion period of any otariid, and yet, they nurse their pups 
for ~4 months (Baker and Donohue 2000). In contrast, Stel-
ler sea lions have one of the longer lactation periods among 
the otariids, with pups nursing for a minimum of a year, and 
some continuing to nurse through their second and even into 
a third year (Calkins and Pitcher 1982). However, unlike 
most phocid and otariid pups, nursing Steller sea lions begin 
swimming and diving well before they are weaned (Rehberg 
and Burns 2008).

This study characterizes the development of both the bio-
chemical properties and MHC profiles of pinniped skeletal 
muscles in four species with different lactation lengths and 
divergent swimming and diving patterns. First, we test the 
hypothesis that the rate at which muscles mature is inversely 
correlated with the length of the dependent period (i.e., 
faster development is associated with a shorter lactation 
period). In addition, we test the hypothesis that differences 
in muscular properties and developmental rates reflect the 
manner in which the muscles are used during locomotor 
activities, with locomotor muscles displaying mature MHC 
composition before postural muscles. Finally, this work 
evaluates whether the biochemical and MHC (contractile) 
components of muscles develop in concert, to identify fac-
tors that limit dive capabilities in young pinnipeds. Such 
physiological constraints in muscular efficiency and  O2 use 
has important implications for first-year survival when mor-
tality rates are highest and marine mammals are just begin-
ning to forage independently (Hastings 1996; Hastings et al. 
2011; Baker and Thompson 2007).

Methods

Animal handling

For this comparative study of muscular biochemistry (Mb 
and enzyme kinetic activities) and MHC characteristics, 
neonatal and adult individuals from two phocid (harp and 
hooded seals) and two otariid (northern fur seals and Steller 
sea lions) species were handled. These species were selected 
because of their divergent developmental, swimming, and 
diving strategies (Fig. 1). Individuals were categorized by 
life-history stages (i.e., fetal, nursing neonate, weaned pup, 
and adult) to standardize cross-species comparisons.

Within the phocid family, hooded seals and harp seals 
were captured in the Gulf of St. Lawrence, Canada from 
2005 to 2008. Hooded seals were classed as either nursing 
neonates (1–2 days old), weaned (~ 7 days, pup unaccom-
panied), or adult, while harp seals were nursing neonates 
(1–2 days oldyellowcoats, thin whitecoats), early and late 
weaned (~ 12 vs. ~ 21 days), or adult. Animals were sacri-
ficed according to approved methods for scientific harvest in 
Canada (Burns et al. 2007). Within the otariid family, north-
ern fur seals from the Lovushki Island rookery in the Kuril 
Islands of far eastern Russia were handled in 2008. Nursing 
neonates (< 1 month) and adult females were captured by 
hoop net, and transported to a research vessel (Shero et al. 
2012). Steller sea lions were captured throughout the Alaska 
range in 2001–2004. Age was determined using morpho-
metric and canine tooth eruption and annuli (Richmond 
et al. 2006). Both species were anesthetized with isoflurane 
gas for muscle sampling, except for three adult sea lions 
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which were opportunistically sampled following harvests. 
Skeletal muscle samples (Pectoralis [Pec] and Longissimus 
dorsi [LD]) were collected from sacrificed animals (hooded 
and harp seals) or with a 4–6 mm biopsy punch (northern 
fur seals and Steller sea lions) and stored at − 80 °C until 
analyses could be performed (for sample sizes see Table 1).

Muscle myosin heavy chain composition 
and biochemistry

Myosin heavy chain isoforms were separated using the SDS-
PAGE technique as described by Blough et al. (1996) and 
Reiser and Kline (1998). All muscle samples (5–15 mg) were 
homogenized in gel sample buffer (8 M urea, 2 M thiourea, 
0.05 M Trizma base, 0.075 M dithiothreitol, 3% (w/v) SDS, 
at pH 6.8, and 0.004 (w/v) bromophenol blue) (Blough et al. 
1996) with 60 μL buffer  mg−1 wet muscle. The homogenate 
was heated for 2 min at 65–95 °C, chilled on ice, and cen-
trifuged. The supernatant was collected and further diluted 
by 5× in gel sample buffer. Gels (0.75 mm thick) were pre-
pared with a separating gel: 7% acrylamide:bis-acrylamide 
(50:1), 30% glycerol, 200 mM Tris buffer (pH 8.8 at 8 °C), 
100 mM glycine, and 0.4% SDS (w/v) and stacking gel: 4% 
acrylamide:bis-acrylamide (50:1), 5% glycerol, 70 mM Tris 
buffer (pH 6.8 at 8 °C), 4 mM glycine, 4 mM EDTA (pH 
6.8), and 0.4% SDS (w/v). Three μL of prepared sample 
was loaded into each well. The gels ran with upper running 
buffer: 100 mM Tris base, 150 mM glycine, 0.1% SDS, and 
800 mM β-mercaptoethanol, and lower buffer: 50 mM Tris 
base, 75 mM glycine, and 0.05% SDS. Gels were run for 
20–24 h on a Hoefer standard vertical electrophoresis unit 
(model SE600, Hoefer, Inc., Holliston, MA, USA) with a 
PS300-B power supply set at constant 300 V and cooling 
system at 8 °C. Following completion of the run, gels were 

silver-stained and developed as described by Blough et al. 
(1996). Gels were then scanned and imaged using digitizing 
software (UN-SCAN IT gel v 6.1).

Seal muscle samples were run with a rat muscle standard 
consisting of (50:25:25) plantaris:EDL:diaphragm using 
SDS-PAGE, and the rat MHC isoforms were identified by 
comparison with previously published studies using identi-
cal analytical techniques (Reiser and Kline 1998). Relative 
migrations of rat and seal bands were used for preliminary 
protein identification. Bands were excised from Coomas-
sie stained gels and sent to the Ohio State University Mass 
Spectrometry and Proteomics Facility, where in-gel protease 
digestion using trypsin was performed, followed by nano-
liquid chromatography–mass spectrometry (LC–MS/MS) for 
analysis of peptides. A Mascot Daemon (Matrix Science v. 
2.3.2, Boston, MA, USA) search against the SwissProt Data-
base was performed to identify significant protein matches.

Myoglobin (Mb) concentrations, aerobic enzymes pro-
portional to metabolic rate and marking the entrance to the 
citric acid cycle (citrate synthase; CS), aerobic markers of 
reliance on fatty acids for fuels (β-hydroxyacyl-CoA dehy-
drogenase; HOAD), and anaerobic enzyme (lactate dehy-
drogenase; LDH) activities were measured in these same 
individual animals and reported previously (Burns et al. 
2015; Lestyk et al. 2009; Richmond et al. 2006; Shero et al. 
2012), except for Steller sea lion enzyme activities due to 
insufficient sample. Enzyme activities were measured for a 
few Steller sea lion muscles, different from specimens with 
MHCs in this study (Table 2).

Statistical analyses

Data were assessed for normality using a Shapiro–Wilk 
test, and MHC percentages were arcsine transformed. For 

Fig. 1  Annual life history 
calendar for the four pinniped 
species included in this study, 
showing the length of lactation 
(neonatal dependency period) 
and the post-weaning fast 
(PWF) ranked from precocial 
to altricial status. Muscles 
sampled are diagrammed, with 
the Longissimus dorsi being 
the primary locomotor muscle 
in phocids and the Pectoralis is 
the primary locomotor muscle 
in otariids
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each species, MHC composition changes among age classes 
and between muscles were first tested using linear mixed 
effect (LME) models with animal ID as a random effect, 
to account for the two types of muscle samples taken from 
the same individual. However, the age × muscle interaction 
was always significant, and therefore, a student’s t test or 
a one-way ANOVA with Bonferroni post hoc comparisons 
was performed to test for intra-specific age differences for 
each muscle type. If data were still not normally distributed 
after transformation, a Kruskal–Wallis H test with pairwise 
Wilcoxon rank sum comparisons were used instead. Inter-
specific comparisons were conducted for the youngest nurs-
ing neonates and adult age classes.

Because the intra-specific changes in muscle biochemical 
properties for these species have been reported previously, 
our analysis focuses on the correlations between muscle bio-
chemical properties and MHC composition. We predicted 
that as both muscle biochemistry and MHC profiles matured, 
the two muscle types (swimming vs. postural) would become 
more distinct as each develops to suit its functional role. To 
test whether muscle biochemistry and MHC profiles devel-
oped at similar rates, the relationship between MHC compo-
sition and muscle Mb/biochemistry was tested using LME 
models with age class and muscle type as covariates and 
animal ID as a random effect. However, because there was 
multicollinearity among variables, a principal component 
analysis (PCA) was used to create an ordination of muscle 
parameters for each species and to assess their similarity (or 
dissimilarity), based on all measured MHC and biochemical 
components in 2-D space. PCAs were performed using the 
princomp function in R with a correlation matrix. PCA ordi-
nation plots were constructed showing the different age and 
muscle groups. Within each species, LME analyses tested 
whether each principal component differed by age class and 
muscle. All analyses were conducted in R (v. 3.5.1) and sig-
nificance was set as α = 0.05.

Results

MHC isoform identification

Six different MHC isoforms were identified in the Pec and 
LD, most of which have been reported previously in other 
mammals and in these species specifically [Figs. 2, 3; (Shero 
et al. 2012, 2015)]. MHC isoforms identified include the 
slow-twitch MHC I isoform, as well as fast-twitch MHC 
IIA, IID/X, and an unknown isoform with glycolytic IIB and 
Neonatal properties (Shero et al. 2012, 2015). Immature-
type bands were confirmed by proteomic analysis at the Ohio 
State University proteomics laboratory. The slowest migrat-
ing band (top) in this study was confirmed from a Steller 
sea lion sample as Embryonic MHC. A second previously 
uncharacterized protein band was identified from a harp 
seal sample as the Neonatal myosin isoform (see Table S1). 
Because the Neonatal and Unknown isoforms were identi-
fied in relatively few animals, and when present, comprised 
small proportions of overall MHC isoforms (4.7 ± 1.0% and 
4.2 ± 0.8%, respectively), they were not included in age and 
species-related comparisons of MHC profiles. There were 
considerable changes in MHC isoform composition during 
ontogeny in both muscles, as well as differences in profile 
and developmental pattern among the four species. 

Table 1  Study sample sizes and animal body mass (mean ± SE) by 
species and age class

Animal sex is shown in parentheses
# Masses could not be obtained from 2 Steller sea lion 1-month neo-
nates and 2 adults
a Note that not all animals had a biopsy taken from both muscles. 
Harp seal fetus had n = 5 for the Pec and n = 6 for the LD. Northern 
fur seal < 1 month Neonate had n = 8 for the Pec and n = 6 for the LD. 
Steller sea lion Nursing (< 1 month neonate) had n = 7 for each mus-
cle type; Nursing (9 months) had n = 9 for each muscle type; Wean 
(17 months) had n = 3 for Pec and n = 2 for LD; Wean (21 months) 
had n = 5 for Pec and n = 4 for LD; Adult (> 24 months) had n = 5 for 
each muscle type

Animal n Mass (kg)

Phocids
Hooded seal (3–7-day lactation)
Nursing (< 2 days) 8 (2F: 6M) 24.0 ± 0.8
Wean and fasting (5–14 days) 8 (4F: 4F) 47.8 ± 1.2
Adult 9 (6F: 3M) 275.0 ± 18.6
Harp seal (7–14-day lactation)
Fetus 6 (4F: 2M)a 8.3 ± 0.5
Nursing (< 2 days) 9 (6F: 3M) 9.0 ± 0.6
Wean and fasting (early) 5 (0F: 5M) 42.0 ± 2.4
Wean and fasting (late) 8 (4F: 4M) 32.9 ± 1.6
Adult 8 (8F: 0M) 115.6 ± 6.5
Otariids
Northern fur seal (4-month lactation)
Nursing (< 1 month neonate) 8 (4F: 4M)a 7.6 ± 0.2
Adult 9 (9F: 0M) 38.3 ± 2.4
Steller sea lion (1–2-year lactation)
Fetus 1 (1F: 0M) 7
Nursing (< 1 month neonate) 8 (2F: 6M)a 24.2 ± 3.2
Nursing (5 months) 2 (1F: 1M) 56.2 ± 4.1
Nursing (9 months) 11 (5F: 6M)a 89.6 ± 7.3
Wean (17 months) 3 (1F: 2M)a 117.8 ± 4.3
Wean (21 months) 6 (2F: 4M) 124.0 ± 4.5
Adult (> 24 months) 7 (0F: 7M)a 498.1 ± 114.9



 Journal of Comparative Physiology B

1 3

Ta
bl

e 
2 

 F
ie

ld
 m

et
ab

ol
ic

 ra
te

 a
nd

 m
us

cl
e 

bi
oc

he
m

ist
ry

 (m
yo

gl
ob

in
 c

on
ce

nt
ra

tio
ns

, c
itr

at
e 

sy
nt

ha
se

, β
-h

yd
ro

xy
ac

yl
-C

oA
 d

eh
yd

ro
ge

na
se

, a
nd

 la
ct

at
e 

de
hy

dr
og

en
as

e 
ac

tiv
iti

es
) a

cr
os

s d
ev

el
op

m
en

t 
in

 th
e 

Pe
ct

or
al

is
 a

nd
 L

on
gi

ss
im

us
 d

or
si

 sk
el

et
al

 m
us

cl
es

En
zy

m
e 

ac
tiv

iti
es

 s
ca

le
d 

to
 fi

el
d 

m
et

ab
ol

ic
 r

at
e 

(F
M

R
) 

ar
e 

sh
ow

n 
in

 p
ar

en
th

es
es

. S
ee

 r
ef

er
en

ce
s 

fo
r 

m
us

cl
e 

an
d 

ag
e-

re
la

te
d 

di
ffe

re
nc

es
 in

 b
io

ch
em

ist
ry

; d
iff

er
en

t l
et

te
rs

 =
 si

gn
ifi

ca
nt

 d
iff

er
-

en
ce

s i
n 

M
b 

an
d 

ab
so

lu
te

 e
nz

ym
e 

ac
tiv

iti
es

 a
m

on
g 

sp
ec

ie
s w

ith
in

 a
n 

ag
e 

gr
ou

p 
fo

r t
ha

t m
us

cl
e,

 w
hi

le
 d

iff
er

en
t n

um
be

rs
 =

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

 in
 sc

al
ed

 e
nz

ym
e 

ac
tiv

iti
es

. N
ot

e 
th

at
 S

te
lle

r s
ea

 
lio

n 
en

zy
m

e 
ac

tiv
iti

es
 w

er
e 

ac
qu

ire
d 

fro
m

 d
iff

er
en

t i
nd

iv
id

ua
ls

 th
an

 M
b 

an
d 

M
H

C
 m

ea
su

re
m

en
ts

 (f
et

us
: n

 =
 1;

 1
 m

on
th

: n
 =

 2;
 2

1 
m

on
th

s:
 P

ec
 n

 =
 4,

 L
D

 n
 =

 1;
 a

du
lt:

 n
 =

 1)
 a

nd
 S

te
lle

r s
ea

 li
on

 
en

zy
m

e 
ac

tiv
iti

es
 w

er
e 

no
t i

nc
lu

de
d 

in
 c

ro
ss

-s
pe

ci
es

 c
om

pa
ris

on
s

FM
R

 (m
L 

 O
2  k

g−
1  

 m
in

−
1 )

FM
R

 re
fe

re
nc

es
Pe

ct
or

al
is

Lo
ng

is
si

m
us

 d
or

si
B

io
ch

em
ist

ry
 

re
fe

re
nc

es
M

yo
gl

o-
bi

n 
(m

g 
g 

 tis
su

e−
1 )

C
S 

(I
U

 g
 

 tis
su

e−
1 )

H
O

A
D

 (I
U

 g
 

 tis
su

e−
1 )

LD
H

 (I
U

 g
 

 tis
su

e−
1 )

M
yo

gl
ob

in
 

(m
g 

g 
 tis

su
e−

1 )
C

S 
(I

U
 g

 
 tis

su
e−

1 )
H

O
A

D
 (I

U
 g

 
 tis

su
e−

1 )
LD

H
 (I

U
 g

 
 tis

su
e−

1 )

H
oo

de
d 

se
al

s
N

ur
si

ng
 n

eo
na

te
23

.7
Ly

de
rs

en
 e

t a
l. 

(1
99

7)
27

.2
 ±

 0.
7a

56
.3

 ±
 1.

8a  
(2

.3
7 ±

 0.
08

)
68

.0
 ±

 5.
6 

(2
.8

7 ±
 0.

24
)1

13
05

.1
 ±

 57
.2

a  
(5

5.
1 ±

 2.
41

)1
33

.5
 ±

 0.
8a

59
.7

 ±
 2.

6a  
(2

.5
2 ±

 0.
11

)1
84

.1
 ±

 5.
3a  

(3
.5

4 ±
 0.

22
)

11
59

.6
 ±

 72
.9

a  
(4

8.
9 ±

 3.
1)

1
B

ur
ns

 e
t a

l. 
(2

01
5)

W
ea

ne
d

12
.4

Ly
de

rs
en

 e
t a

l. 
(1

99
7)

23
.4

 ±
 1.

0
60

.1
 ±

 3.
7 

(4
.8

5 ±
 0.

30
)

63
.0

 ±
 2.

7 
(5

.0
8 ±

 0.
22

)
11

52
.7

 ±
 77

.0
 

(9
3.

0 ±
 6.

21
)

30
.8

 ±
 1.

4
63

.4
 ±

 3.
6 

(5
.1

1 ±
 0.

29
)

90
.7

 ±
 4.

6 
(7

.3
1 ±

 0.
37

)
10

59
.6

 ±
 68

.7
 

(8
5.

5 ±
 5.

5)
A

du
lt

5.
0

2×
 K

le
ib

er
52

.2
 ±

 1.
6a

30
.7

 ±
 1.

8a  
(6

.1
3 ±

 0.
36

)1
26

.4
 ±

 1.
6a  

(5
.2

8 ±
 0.

32
)

14
90

.2
 ±

 10
5.

9a  
(2

89
.0

 ±
 21

.2
)1

88
.6

 ±
 1.

6a
37

.4
 ±

 1.
4a  

(7
.4

9 ±
 0.

27
)1

65
.2

 ±
 2.

7a  
(1

3.
0 ±

 0.
54

)1
11

97
.9

 ±
 79

.4
a  

(2
39

.6
 ±

 15
.9

)1

H
ar

p 
se

al
s

Fe
tu

s
21

.4
U

se
d 

ne
on

at
e 

va
lu

e
9.

7 ±
 1.

6
40

.2
 ±

 3.
0 

(1
.8

8 ±
 0.

14
)

47
.2

 ±
 2.

6 
(2

.2
1 ±

 0.
12

)
54

6.
7 ±

 42
.5

 
(2

5.
5 ±

 1.
99

)
12

.3
 ±

 1.
2

44
.8

 ±
 4.

5 
(2

.0
9 ±

 0.
21

)
48

.3
 ±

 2.
7 

(2
.2

6 ±
 0.

12
)

59
6.

4 ±
 27

.0
 

(2
7.

9 ±
 1.

3)
B

ur
ns

 e
t a

l. 
(2

01
5)

N
ur

si
ng

 n
eo

na
te

21
.4

Ly
de

rs
en

 n
d 

K
ov

ac
s 

(1
99

6)
18

.5
 ±

 1.
2b

49
.8

 ±
 2.

3a  
(2

.3
3 ±

 0.
11

)
60

.3
 ±

 4.
2 

(2
.8

2 ±
 0.

20
)1

79
9.

5 ±
 96

.3
b  

(3
7.

4 ±
 4.

50
)2

23
.9

 ±
 1.

0b
55

.3
 ±

 2.
3a  

(2
.5

8 ±
 0.

11
)1

71
.5

 ±
 1.

6a  
(3

.3
4 ±

 0.
08

)
85

5.
3 ±

 82
.2

b  
(4

0.
0 ±

 3.
8)

1,
2

Ea
rly

 w
ea

ne
d

7.
3

W
or

th
y 

an
d 

La
vi

gn
e 

(1
98

7)
26

.7
 ±

 1.
8

67
.4

 ±
 1.

5 
(9

.2
4 ±

 0.
20

)
62

.4
 ±

 8.
5 

(8
.5

4 ±
 1.

17
)

16
20

.9
 ±

 81
.7

 
(2

22
.0

 ±
 11

.2
)

29
.1

 ±
 2.

2
67

.4
 ±

 0.
8 

(9
.2

3 ±
 0.

11
)

87
.8

 ±
 3.

0 
(1

2.
0 ±

 0.
41

)
11

56
.7

 ±
 84

.8
 

(1
58

.5
 ±

 11
.6

)
La

te
 w

ea
ne

d
6.

6
W

or
th

y 
an

d 
La

vi
gn

e 
(1

98
7)

33
.9

 ±
 1.

8
67

.8
 ±

 2.
8 

(1
0.

3 ±
 0.

42
)

77
.0

 ±
 4.

6 
(1

1.
7 ±

 0.
69

)
12

05
.0

 ±
 11

3.
8 

(1
82

.6
 ±

 17
.2

)
41

.5
 ±

 2.
5

71
.7

 ±
 3.

4 
(1

0.
9 ±

 0.
52

)
86

.4
 ±

 9.
0 

(1
3.

1 ±
 1.

36
)

11
26

.3
 ±

 68
.4

 
(1

70
.7

 ±
 10

.4
)

A
du

lt
3.

2
A

ar
se

th
 e

t a
l. 

(1
99

9)
51

.1
 ±

 2.
9a

31
.6

 ±
 1.

6a  
(9

.8
9 ±

 0.
51

)2
18

.2
 ±

 1.
2b  

(5
.6

9 ±
 0.

37
)

12
75

.0
 ±

 43
.1

a,
b  

(3
98

.4
 ±

 13
.5

)2
83

.3
 ±

 4.
0a

31
.0

 ±
 2.

6b  
(9

.6
9 ±

 0.
66

)2
34

.0
 ±

 2.
6b  

(1
0.

6 ±
 0.

80
)2

11
46

.6
 ±

 14
3.

1a  
(4

52
.1

 ±
 44

.7
)2

N
or

th
er

n 
fu

r s
ea

ls
N

ur
si

ng
 n

eo
na

te
 

(1
 m

on
th

)
15

.3
D

on
oh

ue
 e

t a
l. 

(2
00

0)
12

.4
 ±

 0.
9c

31
.8

 ±
 1.

7b  
(2

.0
8 ±

 0.
11

)
56

.6
 ±

 3.
4 

(3
.7

0 ±
 0.

22
)2

59
8.

0 ±
 45

.2
b  

(3
9.

2 ±
 2.

96
)2

10
.6

 ±
 0.

6c
25

.3
 ±

 2.
7b  

(1
.6

6 ±
 0.

18
)2

44
.1

 ±
 3.

27
b  

(2
.8

9 ±
 0.

21
)

44
2.

6 ±
 51

.1
c  

(2
9.

0 ±
 3.

3)
2

Sh
er

o 
et

 a
l. 

(2
01

2)
A

du
lt

9.
1

2×
 K

le
ib

er
35

.8
 ±

 2.
2b

41
.8

 ±
 2.

2b  
(4

.5
7 ±

 0.
24

)3
42

.5
 ±

 2.
4c  

(4
.6

5 ±
 0.

27
)

98
8.

7 ±
 61

.1
b  

(1
08

.1
 ±

 6.
69

)3
34

.5
 ±

 1.
2b

24
.0

 ±
 1.

6c  
(2

.6
3 ±

 0.
17

)3
33

.2
 ±

 1.
3b  

(3
.6

3 ±
 0.

14
)3

68
1.

7 ±
 51

.8
b  

(7
4.

6 ±
 5.

7)
3

St
el

le
r s

ea
 li

on
s

Fe
tu

s
15

.8
U

se
d 

ne
on

at
e 

va
lu

e
–

9.
72

 (0
.6

2)
24

.2
 (1

.5
3)

30
4.

7 
(1

9.
3)

–
6.

60
 (0

.4
2)

17
.5

 (1
.1

1)
26

5.
0 

(1
6.

8)
R

ic
hm

on
d 

et
 a

l. 
(2

00
6)

N
ur

sin
g 

ne
on

ate
 

(1
 m

on
th

)
15

.8
H

oo
pe

s e
t a

l. 
(2

00
4)

5.
7 ±

 0.
1d

26
.7

 ±
 0.

16
 

(1
.6

9 ±
 0.

01
)

48
.3

 ±
 0.

3 
(3

.0
6 ±

 0.
02

)
47

7.
1 ±

 10
3.

3 
(3

0.
2 ±

 6.
54

)
7.

2 ±
 0.

1c
24

.8
 ±

 5.
9 

(1
.5

7 ±
 0.

4)
41

.4
 ±

 5.
9 

(2
.6

2 ±
 0.

37
)

50
9.

6 ±
 10

9.
4 

(3
2.

3 ±
 6.

92
)

En
zy

m
e 

da
ta

, 
un

pu
bl

is
he

d
N

ur
sin

g 
5 

m
on

th
s

11
.9

H
oo

pe
s e

t a
l. 

(2
00

4)
12

.9
 ±

 0.
3

–
–

–
10

.4
 ±

 0.
1

–
–

–
N

ur
sin

g 
9 

m
on

th
s

8.
9

H
oo

pe
s e

t a
l. 

(2
00

4)
18

.6
 ±

 0.
8

–
–

–
14

.9
 ±

 1.
0

–
–

–
W

ea
ne

d 
17

 m
on

th
s

7.
2

H
oo

pe
s e

t a
l. 

(2
00

4)
24

.6
 ±

 0.
4

–
–

–
16

.3
 ±

 0.
3

–
–

–
W

ea
ne

d 
21

 m
on

th
s

6.
8

H
oo

pe
s e

t a
l. 

(2
00

4)
21

.9
 ±

 1.
0

30
.5

 ±
 2.

7 
(4

.4
9 ±

 0.
40

)
23

.3
 ±

 2.
1 

(3
.4

3 ±
 0.

31
)

80
6.

6 ±
 12

1.
8 

(1
18

.6
 ±

 17
.9

)
11

.4
 ±

 0.
5

14
.1

 (2
.0

7)
14

.4
 (2

.1
2)

36
8.

6 
(5

4.
2)

A
du

lt
2.

7
H

oo
pe

s e
t a

l. 
(2

00
4)

34
.8

 ±
 0.

5a,
b

23
.7

 (8
.7

8)
20

.3
 (7

.5
2)

77
8.

5 
(2

88
.3

)
20

.7
 ±

 0.
4b

13
.6

 (5
.0

4)
15

.5
 (5

.7
4)

59
3.

9 
(2

20
.0

)



Journal of Comparative Physiology B 

1 3

Ontogeny of MHC profiles

All species experienced shifts in MHC composition across 
ontogeny, and transitions in the muscle contractile appa-
ratus tended to be more pronounced in altricial species 
within each taxonomic family, in order to achieve mature 
function. For example, both phocid species included in 
this study exhibited shifts from immature to adult MHC 
isoforms (Fig. 2). In the precocial hooded seal and rela-
tively altricial harp seal, Embryonic MHC declined dur-
ing development in both the Pec and LD (Fig.  2). As 
expected, slow-twitch MHC I protein was replaced with 
fast-twitch MHC IID/X during development, but only in 
the Pec muscle. In the LD, MHC I content tended (P < 0.1) 
to increase with age in both phocid species, but did not 
change significantly. MHC IIA content did not shift with 
age in the hooded or harp seal Pec muscles. In the hooded 
seal LD, MHC IIA content decreased with age, whereas 
the proportion of MHC IIA increased with age in the harp 
seal LD. As a result, across ontogeny in phocid seals, the 
postural Pec muscle always contained significantly more 
MHC IID/X isoform than the LD, characteristic of fast-
twitch primarily glycolytic fibers. The only exception 
was the fetal harp seal muscles which had very low MHC 
IID/X content and showed no difference between mus-
cles. Within each age class, the two muscles contained 
similar proportions of MHC IIA. Conversely, the locomo-
tor LD muscle was poised for greater endurance capacities 
and always had significantly greater slow-type, oxidative 
MHC I content than the postural Pec (all F > 10, P < 0.05).

While northern fur seals have a longer lactation period 
than either phocid species in this study, their lactation 
period is much shorter than all other otariids, including 
the Steller sea lion. The northern fur seal was the only 
species in this study for which no muscle samples con-
tained any Embryonic or Neonatal MHC protein (Fig. 3), 
demonstrating that this species was born with the most 
phenotypically mature muscles. However, both immature 
MHC isoforms were present in altricial Steller sea lion 
pups and even in an adult. In the single Steller sea lion 
fetus sample, Embryonic MHC content was 5–6× greater 
than in 1-month-old neonates, and MHC I and MHC IIA 
were present in substantially lower proportions. Embry-
onic MHC content decreased with age in both muscles 
in the Steller sea lion. Similar to developmental shifts in 
phocid muscles, MHC I content declined with age in the 
Pec of both otariid species, and in the northern fur seal 
LD. Correspondingly, FOG MHC IID/X content increased 
with age in both species’ Pec muscles, but not in the LD. 
Within muscle type, MHC IIA content remained relatively 
constant across ontogeny in both species. Consequently, in 
both otariid species, at birth, the locomotor Pec muscles 
already had significantly higher MHC IID/X content than 

the postural LD, whereas the postural LD had greater MHC 
I than the locomotor Pec (all F > 10, P < 0.05). Northern 
fur seal neonates’ LD muscles had greater IIA content at 
birth than the locomotor Pec muscle; however, it was not 
until adulthood that this pattern emerged in Steller sea 
lion muscles.

Inter‑specific comparisons in MHC profiles

Among the youngest nursing neonates, there were inter-spe-
cific differences in the relative proportion of MHC isoforms 
in both muscles, with the more precocial species being born 
with less immature and slow-twitch MHC isoform content in 
their muscles. Correspondingly, relatively precocial species 
had a greater proportion of fast-twitch protein composition 
than more altricial species, within each taxonomic family 
and in both muscle types. For example, nursing hooded 
seals had a lower proportion of Embryonic MHC protein 
than seen in Steller sea lions or harp seals, and this was 
true for both Pec and LD muscles (Pec: χ2 = 21.4, P < 0.001, 
hooded seal: 2.1 ± 1.2%, harp seal: 15.3 ± 1.9%, Steller sea 
lion: 11.5 ± 4.1%; LD: F3,28 = 17.5, P < 0.001, hooded seal: 
3.0 ± 1.7%, harp seal: 13.1 ± 2.5%, Steller sea lion: 11.6 ± 
3.3%). In Steller sea lions, which have the longest lactation 
period, Pec muscles of nursing pups contained the highest 
proportion of MHC I (39.7 ± 1.7%) of all species (F3,28 = 6.8, 
P = 0.001; northern fur seal: 28.5 ± 2.5%, P = 0.009, hooded: 
28.8 ± 1.6%, P = 0.014; harp: 26.8 ± 2.3%, P = 0.002). 
Despite the fact that the primary locomotor muscle differs, 
within each taxonomic family the more precocial species 
had greater proportions of MHC IID/X in the Pec muscle 
than the more altricial species (hooded and northern fur 
seals > harp seals and Steller sea lions; F3,28 = 9.6, P < 0.001) 
indicating inherent differences between muscle type are pre-
sent even in utero and/or just after birth in the precocial 
hooded seal and in northern fur seals that have the shortest 
lactation length of otariid species. The relative proportion 
of MHC I or IID/X isoform in the LD muscle did not vary 
by species within the youngest nursing neonates. However, 
because the neonatal hooded seal muscles had lower imma-
ture MHC content at birth and northern fur seal muscles 
did not contain any immature MHCs, these species had the 
highest proportions of mature MHC IIA in the LD muscle at 
birth (F3,28 = 4.6, P = 0.010; hooded seal: 48.7 ± 3.2%, north-
ern fur seal: 49.6 ± 2.0%, harp seal: 41.5 ± 1.3%, Steller sea 
lion: 38.8 ± 2.8%). Surprisingly, there were no inter-specific 
differences in the relative proportion of MHC IIA in the 
neonatal Pec muscles.

To test whether mature MHC profiles were more reflec-
tive of muscle use patterns and functional role, inter-spe-
cific differences in MHC profiles were also characterized 
among adults. No adult Pec samples contained the Embry-
onic MHC isoform, and only one adult Steller sea lion LD 
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(postural) contained any Embryonic MHC (8% total pro-
tein). Conversely, 8 adult harp seal postural Pec muscles 
still contained the immature Neonatal MHC (only < 5% of 
total MHC protein content), and one adult hooded and one 
harp seal locomotor LD contained Neonatal MHC (18% 
and < 1%, respectively). Among the primary “adult” fiber 
types (MHC I, MHC IIA, MHC IID/X), Steller sea lion 
adults had the highest proportion of MHC I protein in the 
Pec (overall species effect—F3,27 = 6.2, P = 0.002; pair-
wise comparison—Steller sea lion: 30.6 ± 4.7% > harp and 
hooded seals: 14.1 ± 1.1% and 14.7 ± 2.7%; both P < 0.01, 
slightly higher than northern fur seal: 20.1 ± 1.9%), which 
fits with their primary use of this muscle in locomotion, 
and the use of  O2-sparing strategies. Similarly, adult phoc-
ids had greater MHC I content in their primary locomotor 
muscle, the LD (overall species effect—χ2 = 13.4, P = 0.004; 
pairwise comparison—harp seal: 55.8 ± 3.3%, hooded seal: 
60.6 ± 5.4%, and Steller sea lion: 54.0 ± 3.1% > northern fur 
seal: 38.3 ± 2.3%, all Ps < 0.05). While adults of all species 
had relatively similar proportions of MHC IIA in the Pec 
muscle (38.6 ± 2.0%), the amount of MHC IIA in the LD was 
again highest in northern fur seals (overall species effect—
F3,26 = 7.5, P < 0.001; pairwise comparison—northern fur 
seal: 53.5 ± 2.5% > harp and hooded seals: 38.8 ± 4.7% and 
32.7 ± 2.7%, both Ps < 0.05), but not statistically different 
from Steller sea lions (44.7 ± 1.4%). The relative propor-
tion of fast-twitch primarily glycolytic MHC IID/X did not 
vary across species for either muscle but was overall sig-
nificantly higher in the adult Pec (42.8 ± 2.3%) than the LD 
muscle (5.1 ± 1.4%; overall effect of muscle type—χ2 = 42.7, 
P < 0.001).

Linking MHC composition with muscle biochemistry

As has been reported previously, muscle Mb increased with 
age, and concentrations were generally higher in the pri-
mary locomotor muscle of each species (Fig. 4; Table 2; 
see Lestyk et al. 2009; Richmond et al. 2006; Shero et al. 
2012). In addition, the relative maturity of muscle Mb load 
in the primary locomotor muscle was greater in neonates 
with shorter nursing periods. Indeed, in the otariid locomo-
tory Pec muscle, northern fur seal neonates had Mb con-
centrations that were 34% of adult values, while neonatal 
Steller sea lion Pec muscles only contained 16% of adult Mb. 
Similarly, in the phocid locomotory LD, hooded seal neo-
nates already had developed 38% of adult Mb concentrations 

whereas concentrations had only reached 29% of adult val-
ues in harp seals (Fig. 4).

Within phocids, Mb concentrations and MHC composi-
tion were often directly correlated, as might be expected 
based on reliance of MHC I fibers on oxidative metabo-
lism (Fig. 5). However, the relationship changed throughout 
development (both species F > 20, P < 0.001). For exam-
ple, as hooded seals reached maturity, there was a signifi-
cant positive correlation between the proportion of MHC 
I and Mb concentrations in both muscles of weaned pups 
(F1,8.6 = 30.9, P < 0.001). But in adult hooded seals, the 
relationship between Mb and MHC I also differed between 
muscles (MHC I × muscle interactive effect; F1,18 = 45.9, 
P < 0.001). The positive correlation between Mb and MHC I 
existed only in the adult hooded seal Pec muscle (F1,8 = 10.6, 
P < 0.014), whereas in the LD, Mb content appeared to pla-
teau at higher concentrations and exhibited no correlation 
with MHC I. Similarly, there was a significant positive 
correlation between Mb concentrations and proportions of 
MHC I in harp seal: nursing neonates, late-weaned pups, and 
adults (LME all Ps < 0.01), with no effect of muscle type.

In contrast, there was not a clear linear relationship 
between Mb concentrations (and thus  O2-stores) and MHC 
I (indicative of oxidative metabolism) within otariids. 
MHC I was significantly positively correlated with Mb 
only in 1-month-old Steller sea lion neonates (F1,10 = 9.6; 
P = 0.011), but did not correlate with MHC composition in 
any other otariid groups. As reported previously, enzyme 
activities (scaled to metabolic rate) increased with age, and 
muscles also became more differentiated to suit their func-
tional role (Burns et al. 2015; Shero et al. 2012) with pri-
mary locomotor muscles developing higher enzyme activi-
ties (Table 2).

Because many muscle physiological parameters were 
correlated with one another (Fig. 6a), a PCA analysis fur-
ther elucidated the extent that muscles differentiated dur-
ing development in precocial and altricial species (Fig. 6b). 
Muscle biochemical properties (i.e., Mb and enzyme activi-
ties) tended to account for the most variation across ontog-
eny and muscle type, as indicated by the first principal 
component’s loadings (PC1; Fig. 6c; Table 3). The second 
principal component (PC2) consistently measured changes 
in MHC composition (Fig. 6c; Table 3).

Both PC1 and PC2 exhibited an age and muscle effect in 
all species in this study, further indicating that numerous bio-
chemical and contractile changes occur before muscles reach 
maturity. In hooded and northern fur seals, muscle types 
formed distinct groupings even in young animals (Fig. 6), 
showing that biochemical and MHC properties had devel-
oped at an early age, leading to muscle differentiation in 
neonates (and the Pec and LD exhibited little overlap in the 
ordination plot, showing muscles were dissimilar; Fig. 6b). 
This was due to significant age × muscle interactions in both 

Fig. 2  Myosin heavy chain composition across development in 
phocid seals (hooded seal, harp seal) in a postural muscle (Pec; a, 
c) and locomotor muscle (LD; b, d). MHC isoform age effects are 
displayed for each muscle; different letters indicate significant dif-
ferences between age classes for the  respective MHC isoform. Note 
that pinniped muscles did not contain any MHC IIB isoform; the seal 
IID/X isoform ran further in the gel than rat IID/X

◂
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Fig. 3  Myosin heavy chain composition across development in otariid 
seals (northern fur seal, Steller sea lion) in a locomotor muscle (Pec; 
a, c) and postural muscle (LD; b, d). MHC isoform age effects are 
displayed for each muscle; different letters indicate significant dif-

ferences between age classes for the  respective MHC isoform. Note 
that pinniped muscles did not contain any MHC IIB isoform; the seal 
IID/X isoform ran further in the gel than rat IID/X
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PC1 and PC2 in the hooded seal (interactive effect—PC1: 
F2,22 = 61.3, P < 0.001; PC2: F2,22 = 31.8, P < 0.001). Only 
PC1 exhibited an interactive effect in northern fur seals 
(F1,11 = 8.0, P = 0.016). In the relatively altricial harp seal, 
neonatal skeletal muscles were less differentiated by func-
tion, and even as adults some individuals had similar proper-
ties in their Pec and LD muscles (indicated by more overlap 
between muscle types; Fig. 6b). Therefore, biochemical and 
MHC components both developed by an earlier age in pre-
cocial species, but the pattern of differentiation and mature 
phenotype appeared specific to each taxonomic family (rates 
of differentiation: hooded seal > northern fur seal > harp 
seal).

Discussion

This study shows that substantial development of muscle 
biochemistry and the underlying myosin isoform expression 
occurs prior to, or soon after independent foraging begins 
in pinnipeds. While all species in this study were born with 

immature muscles, the muscles of precocial species had 
MHC profiles more similar to those of adults at birth than 
did altricial species. However, the pattern was specific to 
each taxonomic family. Within the phocid family, hooded 
seals were born with greater proportions of MHC IID/X 
characteristic of fast-twitch fibers for burst-type activities, 
and less Embryonic and Neonatal MHC, suggesting that 
hooded seal muscles underwent more in utero development 
(Close 1972; Walker and Luff 1995; Singer and Mühlfeld 
2007) than harp seals. Still, despite having the shortest nurs-
ing period of any mammal, hooded seal pup muscles were 
not functionally mature (Burns et al. 2007, 2015; Lestyk 
et al. 2009) nor did they have mature contractile proper-
ties as indicated by MHC composition. Similarly, among 
the otariids, northern fur seal muscles were more mature 
at birth than those of the relatively altricial Steller sea lion. 
Surprisingly, neonatal northern fur seals had the most phe-
notypically mature muscles of all the species in this study, 
despite the fact that their nursing period was substantially 
longer than either of the phocid species.

In the phocid species, the muscles of weaned pups did 
not contain all the biochemical properties or MHC profiles 
indicative of contractile potential, as in adults. Thus, weaned 
pups must start their first year of independent foraging with a 
disadvantage in performance that persists until their muscles 
have time to further develop to reach adult phenotypes. In 
combination, pups are weaned with lower  O2 stores (Rich-
mond et al. 2006; Shero et al. 2012; Burns et al. 2005, 2007; 
Clark et al. 2007), less cardiovascular control with which 
to partition  O2 during dives (i.e., bradycardia and periph-
eral vasoconstriction) (Lapierre et al. 2004; Greaves et al. 
2005), higher mass-specific metabolic rates (Donohue et al. 
2000; Boily and Lavigne 1997), and immature muscle fibers 
(this study; Kanatous et al. 2008) that continue to consume 
 O2 without generating propulsive force as effectively, as 
compared with adults. This study was unable to distinguish 
precisely when northern fur seal muscle MHC composi-
tion reaches maturity; however, Steller sea lions had mature 
muscles at weaning, because they were weaned at a much 
older age relative to all other species in this study. While the 
protracted lactation period in Steller sea lions would pose 
great energetic costs to the adult female (Boyd 1998), addi-
tional time for the offspring’s physiology and musculature to 
develop prior to the first year of independent foraging would 
likely increase survival rates and fitness.

Of species included in this study, the hooded seal 
achieves the longest and deepest dives, whereas neonatal 
otariids are the most active on land. These attributes may 
further account for the inter-specific variation in the matu-
rity of neonatal muscles. In mammals, the environment in 
which the embryo develops plays a critical role in shaping 
myogenesis and muscle phenotype at birth (Maltin et al. 
2001), and maternal nutritional status and foraging success 

Fig. 4  Myoglobin concentrations in the Pec and LD muscles of 
otariid and phocid species. Percentages indicate nursing neonate 
myoglobin loads relative to adult values
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can have life-long impacts on offspring muscle fiber com-
position and metabolic machinery (Hillier et al. 2007; Pettitt 
and Knowler 1998). For example, in utero hypoxia exposure, 
such as occurs while the pregnant female is diving, may also 
promote some prenatal development of muscle biochemistry 
and fiber composition (Hoppeler and Vogt 2001). Profound 
bradycardia and vasoconstriction reduce  O2 use rates and 
delivery to the working muscles during dives (Butler and 
Jones 1997; Butler 2004; Elsner 1969), and also decreases 
the maternal–placental  O2 gradient and arterial  O2  (PaO2) 
tension in the fetus (Liggins et al. 1980). The greater mag-
nitude and duration of hypoxia exposure in species that are 
capable of making longer dives may promote earlier muscle 
development.

Exercise (i.e., load-bearing activity) is also required for 
muscle maturation in pinnipeds, which has been demon-
strated by delayed Mb maturation in hooded seals denied 
access to swimming pools (Geiseler et al. 2013) and that 

pinniped myocytes cultured under hypoxic conditions still 
fail to develop Mb and enzyme activities equivalent to wild 
animals (De Miranda et al. 2012; Kanatous and Mammen 
2010). Hypoxia and exercise both stimulate NFAT/MEF-2, 
hypoxia inducible factor (HIF)-1, and Sp1 pathways, ulti-
mately resulting in the production of endogenous  O2-binding 
proteins, glycolytic enzymes, and the transition to mature 
fiber phenotype (Hochachka et al. 1998; Hochachka and 
Somero 2002; Halvorsen and Bechensteen 2002; Hoppeler 
and Vogt 2001; Haddad et al. 2003). Particularly in north-
ern fur seals, physical activity on land at neonatal rookeries 
may stimulate these pathways and promote faster maturation 
of muscle phenotypes. Thus, species that start load-bearing 
activities earlier in development and/or to a greater degree 
are likely to undergo more rapid muscle maturation.

Concomitant life history events that occur directly post-
weaning may also help facilitate muscle maturation just 
prior to the first year of independent foraging. For example, 

Fig. 5  The relationship between 
muscle myoglobin and MHC I 
changed across age classes, for 
hooded seals, harp seals, north-
ern fur seals, and Steller sea 
lions (squares = Pectoralis and 
circles = Longissimus dorsi). 
Solid lines show significant 
correlations, dashed indicate 
non-significant relationships
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the high mass-specific metabolic rates of neonates, prefer-
ential catabolism of fats during the PWF, and neonatal molt 
(which occurs in utero in hooded seals) are all associated 
with increased circulating thyroid hormone concentrations 
(Atkinson et al. 2011; Boily 1996; Cox 2010; Somo et al. 
2015; Oftedal et al. 1991). These endocrine factors are 
potent regulators for transcription of skeletal muscle genes 
associated with Mb and aerobic enzymes (dos Santos et al. 
2001). Furthermore, these same hormones are critical in 
pathways responsible for decreasing expression of Embry-
onic and Neonatal MHC isoforms and for up-regulation 
of fast-twitch MHC and fiber types (Baldwin and Haddad 
2001).

In addition to variation in the rate of muscular devel-
opment during ontogeny, the degree of differentiation 
between the postural and locomotor muscles became more 
pronounced with age and likely reflects a balance between 
the need for endurance versus sprint activities, as well as the 
differences in ATP yields between aerobic and anaerobic 

metabolism (Bass et al. 1969). Once again, in the more pre-
cocial species, the Pec and LD portrayed distinctive bio-
chemical properties and MHC profiles earlier during ontog-
eny, in a family-specific manner. The precocial hooded seal 
and northern fur seal postural and locomotor muscles were 
more differentiated at a young age (evidenced by age, mus-
cle, and age × muscle differences in principal components), 
whereas the Pec and LD did not exhibit substantial differ-
ences in the relatively altricial harp seal until adulthood.

Overall, there were inherent differences in MHC profiles 
between muscle type, suggesting that muscle contractile prop-
erties were constrained. Regardless of muscle function, the 
Pec muscles always had greater fast-twitch myosin composi-
tion, and more of the IID/X isoform characteristic of glyco-
lytic fibers, as compared with the LD muscles in all species. 
In contrast, muscle biochemistry appeared to be more plas-
tic and developed to be most reflective of muscle use (Choi 
et al. 1993; Ricklefs et al. 1994; Shea et al. 2007). Adults 
of all species tended to have higher Mb and aerobic and 

Fig. 6  a Heat map correlations, and b, c Principal component anal-
yses showing a 2-D ordination of muscle MHC composition and 
biochemistry across development in hooded, harp, and northern 
fur seals. Ellipses show 95% CI for each age and muscle; biplots 
show contribution of physiologic measure to PC. Ordinations show 

that muscle types diverge in their physiology across development 
(squares = Pectoralis and circles = Longissimus dorsi), and to varying 
degrees among species. Steller sea lions were not included due to the 
lack of muscle biochemistry and MHC data for the same individuals
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anaerobic enzyme activities in the primary locomotor mus-
cle. In phocids, the LD generally had higher Mb and enzyme 
activities, and this pattern was entirely reversed in otariids 
with biochemical parameters being higher in the Pec (Lestyk 
et al. 2009; Burns et al. 2015; Shero et al. 2012; Kanatous 
et al. 1999). Considering muscle development across multi-
ple levels of organization revealed that muscle biochemical 
properties (i.e., [Mb], CS, HOAD, and LDH activities) were 
highly correlated, and thus the pathways facilitating Mb and 
enzyme maturation are likely up-regulated simultaneously. 
This is consistent with the notion that enzyme groups within 
the same metabolic systems develop in constant proportions 
(Bass et al. 1969). However, metabolic properties were not 
always correlated with changes in MHC profiles suggesting a 
mismatch between the development of muscle biochemistry 
versus contractile capacity (Shero et al. 2012).

In this study, the phenotype of mature muscles differed by 
species in ways predicted based on their diving abilities and 
swimming styles. For example, all muscle biochemical com-
ponents (i.e., Mb and enzyme activities) were lower in the 

otariids as compared with the longer/deeper diving phocid 
adults, suggesting lower aerobic potential for generating pro-
pulsive power. Conversely, adult phocid seals had the highest 
MHC I content in the LD, the primary locomotor muscle, 
and having predominantly slow-contracting characteristics 
(SO fibers) likely facilitates slower  O2 use for enhanced 
endurance and longer dive durations. These muscles were 
poised for maintaining aerobic, lipid-based metabolism in 
hypoxic conditions during long dives (Kanatous et al. 1999). 
The adult northern fur seal had lower proportions of slow 
MHC I than all other species in this study, and greater FOG 
content in the LD as compared with the two phocid spe-
cies. This suggests the northern fur seals have greater oxi-
dative fast-twitch (burst) capacities, perhaps reflecting this 
species’ higher activity levels at rookeries and faster meta-
bolic rate than the phocid species included in this study (see 
Table 2). Variation in musculature that is reflective of use is 
also well characterized among breeds in domestically bred 
large mammals. For example, thoroughbred horses are selec-
tively bred for enhanced burst-speed activities (i.e., fewer 

Table 3  Principal components with the highest five loadings (eigenvalues) from PCA ordination of muscle biochemistry and MHC composition, 
for species, where all data were available (hooded seal, harp seal, northern fur seal)

The proportion variance accounted for by each PC is shown in parentheses

Strongest relationship Hooded seal

PC 1 (37.0%) PC 2 (24.9%)

Parameter Loading Parameter Loading

1 Mb − 0.490 MHC IID/X − 0.569
2 HOAD/FMR − 0.474 MHC I 0.532
3 CS/FMR − 0.447 MHC Unknown − 0.366
4 LDH/FMR − 0.389 LDH/FMR − 0.335
5 MHC IIA 0.284 MHC Embryonic 0.269

Strongest relationship Harp seal

PC 1 (49.9%) PC 2 (15.0%)

Parameter Loading Parameter Loading

1 CS/FMR 0.430 MHC I 0.649
2 MHC Embryonic − 0.428 MHC IID/X − 0.648
3 LDH/FMR 0.403 MHC Neonatal − 0.260
4 Mb 0.393 Mb 0.172
5 HOAD/FMR 0.362 MHC IIA 0.158

Strongest relationship Northern fur seal

PC 1 (63.5%) PC 2 (20.6%)

Parameter Loading Parameter Loading

1 CS/FMR − 0.437 MHC IIA 0.553
2 LDH/FMR − 0.418 Mb 0.524
3 MHC I 0.398 MHC IID/X − 0.450
4 MHC IID/X − 0.388 LDH/FMR 0.311
5 HOAD/FMR − 0.346 MHC I 0.254
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slow-oxidative muscle fibers), ‘double muscled’ cattle were 
bred for exaggerated hyperplasia during development result-
ing in more meat, and others are selected for meat quality 
(more SO fibers and fat ‘marbling’ in the tissue) (Wegner 
et al. 2000; McPherron and Lee 1997; Maltin et al. 2001; 
More O’Ferrall and Cunningham 1974). Thus, whether it 
is under artificial conditions or in the wild, differences in 
selective pressures result in markedly different mature mus-
cle phenotypes. Across Pinnipedia, species with longer dive 
durations had locomotor muscles with a higher proportion 
of SO MHC/SO fibers and greater myoglobin concentrations 
at maturity (Fig. 7; Lestyk et al. 2009). This demonstrates 
that both high  O2 stores, as well as slow and effective use of 
 O2 are crucial to maximizing dive capacities. Therefore, the 
mismatch in development of muscle biochemistry and MHC 
composition would constrain underwater foraging times in 
newly weaned pups, as compared to adults with coordinated 
muscle biochemical and MHC profiles.

In summary, this study characterized the development 
of MHC composition for muscular contraction, and bio-
chemical properties of substrate and  O2 use in multiple 
species representing precocial and altricial animals across 
the pinniped lineage. The longest and deepest-diving pin-
niped species had higher aerobic potential (Mb and enzyme 
activities) and more endurance-type SO MHC content at 

maturity, indicating that effective  O2 management in mus-
cle fibers is crucial to reaching greater depths (i.e., more 
strokes) and extending the duration of underwater forag-
ing efforts. Across ontogeny, the transitions to mature fiber 
types and contractile apparatus appeared to be prioritized, 
and were followed by protein production to build Mb-O2 
stores and enzyme capacities specific to muscle function. 
Pups of species that exhibit slower development and/or a 
greater degree of mismatch between muscle biochemistry 
and MHC composition at the time of weaning, will likely 
have less flexibility in the foraging strategies they can utilize 
(Burns et al. 1999; Rehberg and Burns 2008; Fowler et al. 
2006; Geiseler et al. 2013; Folkow et al. 2010). Constraints 
in diving and foraging behaviors of newly weaned pups are 
likely to make these species particularly vulnerable to unpre-
dictable changes in prey availability, due to either climate 
regime shifts or anthropogenic disturbance, during the first 
year of independent foraging.
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